

Inteligência Artificial Aplicada à Previsão de Desastres

Dr. Elton Escobar - Cemaden

São Paulo, 25 de novembro de 2025

Conheça o palestrante

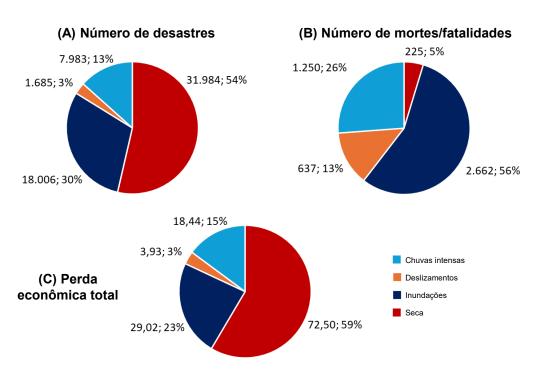
Dr. Elton Escobar

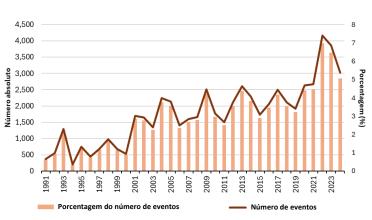
Formação

- · Bel. em Ciências Ambientais UNIFESP
- · Me. em Ciências Ambientais UFSCar
- · Dr. em Sensoriamento Remoto INPE

Experiências Internacionais

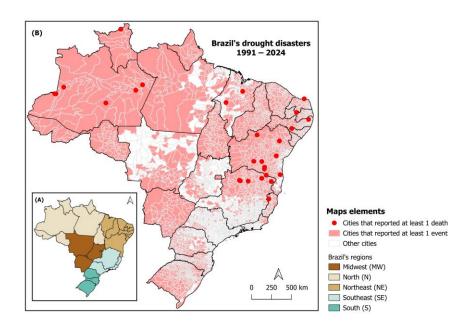
- · Universität Hamburg Alemanha
- · USDA-ARS EUA

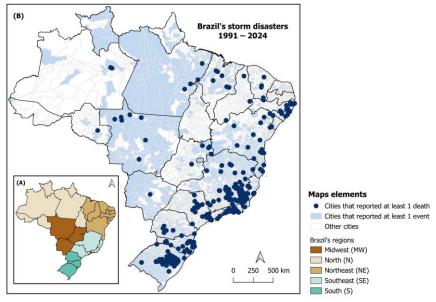

Atualmente realiza Pós-doutorado no Cemaden com financiamento FAPESP



01	Panorama Nacional – Desastres Socioambientais
02	Uso de IA em Estudos de Suscetibilidade a Deslizamentos de Terra
03	Sistema de Alerta Antecipado de Inundações – Alagamentos Urbanos de Alta Resolução Espacial

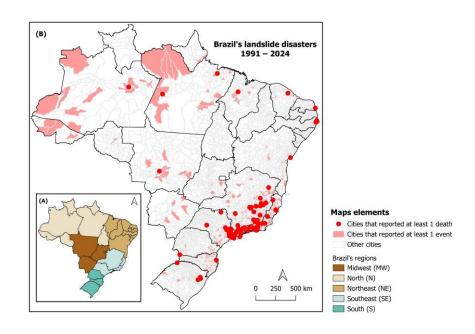
DESASTRES SOCIONATURAIS PANORAMA NACIONAL 1990 – 2024

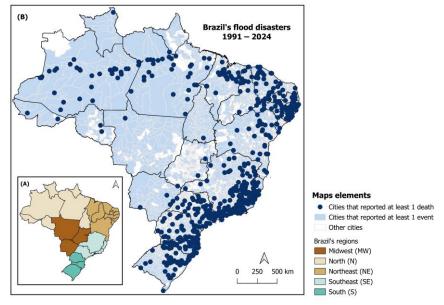




Escobar-Silva et al. (2026)

DESASTRES SOCIONATURAIS PANORAMA NACIONAL 1990 – 2024





Escobar-Silva et al. (2026)

DESASTRES SOCIONATURAIS PANORAMA NACIONAL 1990 – 2024

Escobar-Silva et al. (2026)

Uso de IA em Estudos de Suscetibilidade a Deslizamentos de Terra

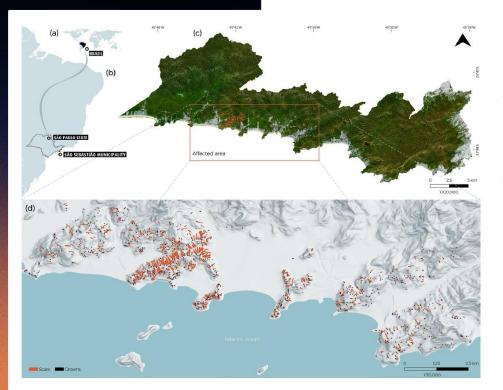
Deslizamentos em São Sebastião (SP)

19 de fevereiro de 2023

Deslizamentos em São Sebastião (SP)

A cadeia de montanhas faz as nuvens da chuva subirem e se concentrarem no litoral

Baixa pressão

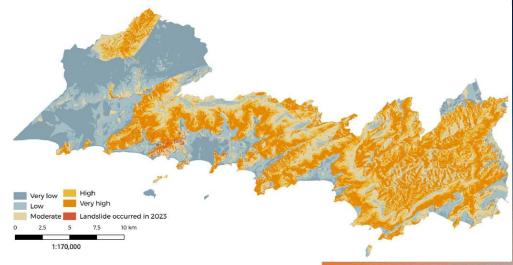

2 Frente fria 3 Ventos quentes

Nuvens com muita água

Cadeia de montanhas

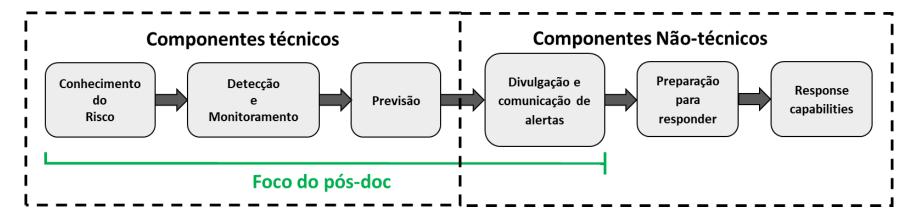
Fonte: Giovanni Dolif - Cemaden

Mapeamento da suscetibilidade a deslizamentos de terra


- Existência de um inventário de alta resolução de 97.742 amostras de deslizamentos de terra coletadas durante o evento de São Sebastião em fevereiro de 2023 (Coelho et al, 2024);
- Marques-Carvalho et al. (2024) aplicou modelagem com IA para identificar a distribuição espacial das ocorrências de deslizamentos em São Sebastião (SP)
 - variáveis: declividade, elevação, curvatura do Perfil, posição relativa da declividade, orientação, índice de rugosidade do Terreno, uso e cobertura do Solo, geomorfologia, precipitação, distância aos corpos d'água, litologia, pedologia, entre outras

Marques-Carvalho et al. (2025)

Mapa de suscetibilidade a deslizamentos de terra gerado pelo método proposto


Marques-Carvalho et al. (2025)

Sistema de Alerta Antecipado de Inundações/Alagamentos Urbanos de Alta Resolução Espacial

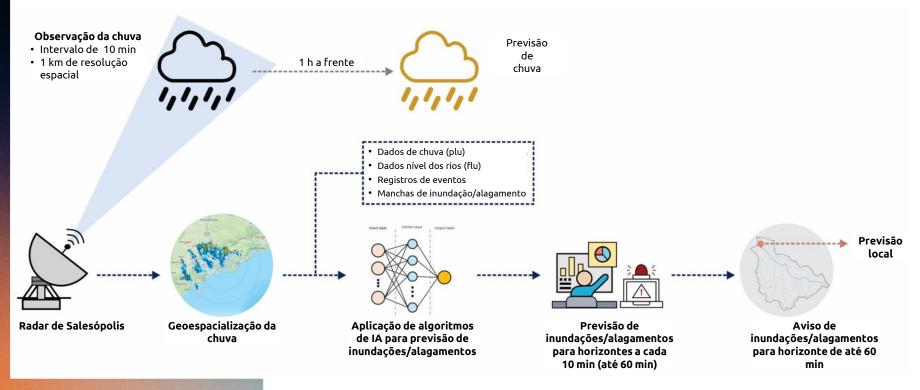
SISTEMAS DE ALERTA ANTECIPADO

Fonte: UNDRR (2017)

OBJETIVO

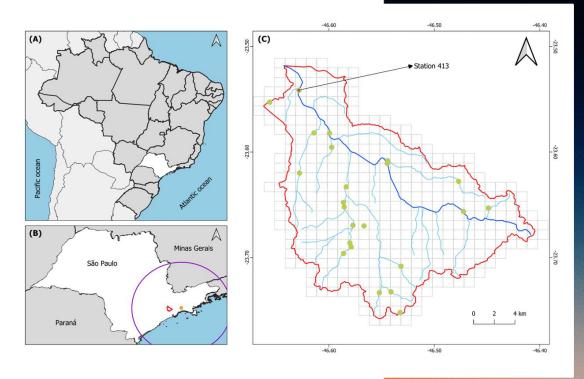
Alto Médio Baixo

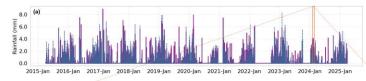
- •Desenvolver um protótipo conceitual para um sistema de alerta antecipado de inundações/alagamento de alta resolução (espacial e temporal).
- •Este sistema é projetado рага identificar pontos críticos ou zonas de inundação.

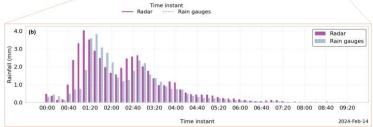


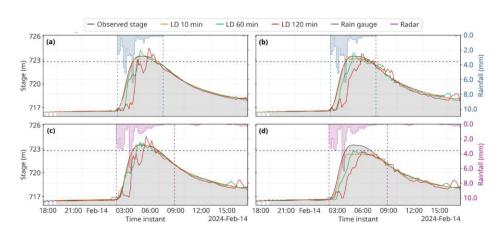
Metodologia

Acoplamento:

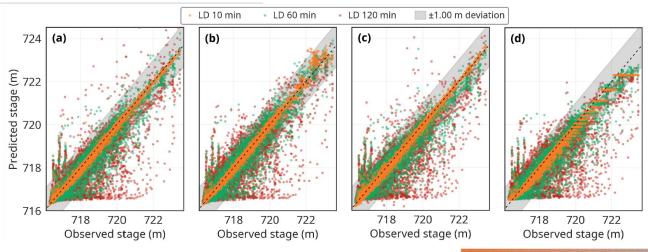

• Aprendizado de máquina, dados plu e flu, registros de eventos e previsão por radar




Trabalhos prontos!

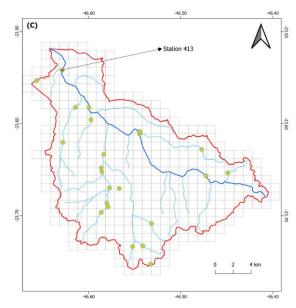


Rocha-Filho et al. (2026)



Rocha-Filho et al. (2026)

Score type	LinearSVR				XGBRegressor			
	10 min	60 min	120 min	240 min	10 min	60 min	120 min	240 min
NSE – Gauge	0.996	0.933	0.783	0.430	0.995	0.939	0.809	0.516
NSE – Radar	0.992	0.926	0.788	0.351	0.990	0.921	0.781	0.479
KGE - Gauge	0.990	0.934	0.830	0.533	0.990	0.961	0.857	0.573
KGE - Radar	0.989	0.903	0.806	0.535	0.951	0.893	0.776	0.495
RMSE (m) - Gauge	0.070	0.279	0.500	0.811	0.080	0.266	0.469	0.747
RMSE (m) – Radar	0.094	0.291	0.494	0.865	0.105	0.301	0.503	0.775
CPU-time (s) - Gauge	242	108	81	83	2166	3128	3133	3215
CPU-time (s) – Radar	3895	3599	3469	3711	32515	32416	32373	32187



Rocha-Filho et al. (2026)

Próximos passos

- Rotulagem de eventos;
- Mapa da extensão das inundações com base em registros de inundações/alagamentos;
- Aplicação de nowcasting;
- Alertas locais e pontuais;
- Aberto a colaborações.

Obrigado!

eltescobar@gmail.com | elton.escobar@cemaden.gov.br

